

Optimal charging schedule and management for a fast-charging battery electric bus system

Dr. Ziqi Song

Assistant Professor, Transportation Division Head Department of Civil and Environmental Engineering Utah State University

Fast-charging for BEBs

The impacts of demand charges

- CALSTART (2014) reviewed electric rate schedules of 26 major electric utilities in Arizona, California, Colorado, Florida, Georgia, Illinois, New York, Oregon, Texas and Washington
 - 21 out of the 26 electric utilities levy demand charges on their commercial and industrial customers.
 - Three utilities indirectly include peak demand to calculate the total customer charge.
- Demand charges accounted for 75.2%±8.6% of the total electricity bill for a fleet of five electric buses in Tallahassee, Florida (Qin et al., 2016)

Fuel cost for diesel, CNG and electric buses with demand charges Source: CALSTART (2014)

A case study in Utah

Selected UTA Bus Lines

Demand profiles for uncontrolled charging

(a)

Optimal demand profiles

(b)

Other ways to reduce demand charges

 Energy storage system (ESS)

Source: Tesla.com

- Basic idea:
 - ESS can draw energy from the power grid using a lowpower energy storage charger at any time.
 - At the charging station with an ESS, buses draw energy from the ESS through the high-power fast-charger within a short dwelling time

Questions and answers

Email: ziqi.song@usu.edu

