

Jason.Quinn@colostate.edu

The Economics of Electrifying America

Jason C. Quinn

Noah Horesh, David Trinko, Evan Sproul, Shijie Tong, Michael Ferry, Manasa Muralidharan, Hongjie Wang, Regan Zane, Konstantina Gkritza

Colorado

The presentation focuses on the economic viability of Wireless Power Transfer

Infrastructure requirements for wireless power transfer will require electrification of high-speed roadways

Wireless power transfer deployment requires a reasonable capital investment

United States Roadways

Wireless power transfer will increase baseload power demands

Technology adoption directly impacts the economic viability of wireless power transfer

The presentation focuses on the economic viability of Wireless Power Transfer

COLORADO STATE UNIVERSITY

Jason.Quinn@colostate.edu

Opportunities for batteries include energy storage

Battery reconditioning with grid energy services

Revenues from real time market support the economic viability of battery reconditioning

125.0° W122.5° W120.0° W117.5° W115.0° W

The presentation focuses on the economic viability of Wireless Power Transfer

Economic viability of WPT based long-haul trucking shows a payback can be15 years

In summary, systems level economic evaluation of electrified transportation systems is critical to advancing the technology

Deployment of a WPT system can see paybacks that are within the lifetime of the system

Systems Level Economics

Return on Investment

EV batteries can be reconditioned and provide grid energy services