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The Future of Road Transportation

A A

o Electrified

= Where to? =4

o Autonomous O

o Dynamic wireless charging can enable this future: o Shared
e Increase penetration of electric vehicles (EVs)
o Make EVs fully autonomous
o Allow shared autonomous EVs to operate continuously
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Inductive Wireless Charging
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Limitations of Inductive Wireless Charging

o Inductive systems require ferrite cores for magnetic flux guidance and shielding
o Fragile
o Difficult to embed in road
o Expensive

o Inductive systems operate at relatively low frequencies to limit ferrite losses
e Large and Heavy

Source: ORNL
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Capacitive Wireless Charging
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Electric Vehicle Charging Environment
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Capacitance Network Simplification
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Air gap: 12 cm
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Air gap: 12 cm
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Charging Pad
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Primary side

Secondary side
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