

Wireless Vehicle to Grid Systems: Recent Technological Advances

Duleepa J Thrimawithana

Power Electronics Research Group Department of Electrical and Computer Engineering The University of Auckland, Auckland, New Zealand

Wireless EV Chargers: Future

V2G Challenges & Progress

- Efficient and cost effective circuit topologies
 - Promising novel designs are investigated
- Spatial tolerance
 - Improved magnetic deigns and tuning topologies that are tolerant to misalignment are under development
- Policies and standards
 - Significant progress made with regards to wired V2G systems leading to new policies and standards in the future
 - Examples include <u>EDISON</u>, <u>SPIDERS</u> and <u>MeRegioMobil</u> projects
- Effective energy management methods
 - Still at early stages recent efforts include for example <u>V2G-Sim</u>
- Battery life
 - Hybrid storage systems have been developed to minimize cycling of batteries
 - Promising battery technologies?

Bi-Directional WPT Systems

- Bi-directional WPT systems are critical for implementing V2G services
 - Uni-directional systems have very limited capabilities
- Most popular topologies are
 - H-bridge VSI based LCL-LCL topology
 - H-bridge VSI based series-series (CL-CL) topology
 - Push-pull CSI based LC-LC topology
- Phase-shift between converters regulates both the magnitude and direction of power flow
 - VSI may use pulse width modulation techniques to regulate the magnitude of power flow
- Grid-frequency inverter provides a bi-directional power interface with the grid

A typical wireless V2G system

BD-WPT Current State

- DC-DC efficiency of commonly reported BD-WPT systems are in the range 92% to 96%
 - Within the X, Y, Z operating region
 - Higher efficiency and spatial tolerance in comparison to UD-WPT at the expense of control complexity
- Mostly WPT1 to WPT3 level systems
 - High-power stationary systems have been demonstrated
- Although direct AC-AC primary converters have been developed two stage AC-DC-AC approach preferred
 - Power ripple leads to poor efficiency and higher EMI
- Limited V2G services illustrated
 - Mainly grid feeding
- Synchronization techniques that enable seamless bi-directional power transfer has been demonstrated
 - Robustness of the closed loop controllers still need investigation
- Energy sharing capabilities have been demonstrated
 - Lower efficiency due to double-coupled system topology

A Comparison

Dr. D J Thrimawithana for CERV'18, Feb 2018 Γλq Prepared

New Developments at UoA

Active DC-Link Control

- DC-link actively controlled
 - Does not require additional switching devices
 - Suitable for VAR injection and harmonic compensation
 ✓ While reducing size of DC-link
- Improved efficiency and misalignment tolerance
 - Especially partial load efficiency

New Compensation Methods

- Higher order tuned circuits and coupled magnetics to achieve a system immune to misalignment
 - Maintains a near constant output power
 - Reduces VAR loading under misaligned conditions
- Simplify control and improves efficiency under misalignment
 - Example shown above for a fixed duty-cycle controller

Direct Grid Integration

- Employs two half-bridge converters for direct grid integration
 - Reduced number of conversion stages and eliminates large DC-link
- Enables bi-directional power flow
 - Low cost implementation of V2G services