OPTIMIZATION OF ELECTRIC VEHICLE SYSTEM MODELS FOR IMPROVED DECISION MAKING

JOHN SALMON, ASSISTANT PROFESSOR JOHNSALMON@BYU.EDU BRIGHAM YOUNG UNIVERSITY

INTRODUCTION

- The Infrastructure to support the Electric Vehicle System is highly nonlinear and multi-dimensional
 - Multiple stakeholders, Power Companies, Vehicle OEMs, Government Officials, ...
 - 1000s of agents, Unknown Behavioral Response, Traffic Impacts, ...
 - Physical Constraints, Power Supply/Demand, Spatial-Temporal interactions, ...
 - Evolving Technology, Obsolescence, Utilization, ...
 - Adoption concerns, Range Anxiety, Safety, ...
 - Implementation/Maintenance Cost, etc.
- Approach is to model the system with Agent Based Modeling and develop a framework to answer key questions
 - Start with exploratory and validation efforts
 - Continue with optimization of the EV system for multiple scenarios

A SIMPLE AGENT-BASED MODELING (ABM) MECHANISM

Observe "emergent behaviors" from agent-environment interactions

ENVIRONMENT - SALT LAKE COUNTY

AGENTS/PERSONAS

- Each agent in our system takes on a persona
- Each persona has a defined
 - Home location
 - Work location
 - Type of EV
 - Work Schedule
 - Recreation Schedule
 - Family Responsibilities (e.g. children at school)
 - Driving/Charging Style and Behavior
- These are randomly assigned at the initialization phase to N individuals

MODEL VALIDATION

10 Charger Locations

20 Charger Locations

30 Charger Locations

40 Charger Locations

50 Charger Locations

50 Charger Locations

ELECTRIFIED ROADWAYS

- A similar ABM can be used but instead of locations for chargers we defined sections or patches of road to be WPT
- As the agents move across these "patches" their battery is charged a small amount
- Similar questions can be asked
 - How many sections of WPT chargers are required for different scenarios?
 - Where should they be located?
 - How will drivers respond?

WHICH INFRASTRUCTURE IS "BETTER"?

VS

CONCLUSION

- ABM shows usefulness in modeling an EV system where 1000s of agents must interact to obtain the collective emergent behavior
- Modeling EV infrastructures with charger locations has shown to offer methods to explore and optimize these systems and inform decision makers about potential policies
- Analyzing electrified roadway systems can use similar models and will help explore how WPT will impact responses such as adoption rates, costs to various stakeholders, and driver behavior

THANK YOU!