A Cost-Competitiveness Analysis of Charging Infrastructure for Electric Bus Operations

Zhibin Chen1 Yafeng Yin1 Ziqi Song2

1University of Michigan, Ann Arbor

2Utah State University

February 26, 2018
Introduction

Figure: EV Market Share (%)

- limited driving range
- long charging time
- expensive battery
- shortage of charging infrastructure

Zhibin Chen, Yafeng Yin, Ziqi Song
Introduction

A Cost-Competitiveness Analysis of Charging Infrastructure

Figure: EV Market Share (%)

- limited driving range
- long charging time
- expensive battery
- shortage of charging infrastructure

Figure: EV Market Share (%)

Zhibin Chen, Yafeng Yin, Ziqi Song
Introduction

A Cost-Competitiveness Analysis of Charging Infrastructure

- limited driving range
- long charging time
- expensive battery
- shortage of charging infrastructure

Figure: EV Market Share (%)
Introduction

A Cost-Competitiveness Analysis of Charging Infrastructure

Figure: EV Market Share (%)

- limited driving range
- long charging time
- expensive battery
- shortage of charging infrastructure
Introduction

Figure: EV Market Share (%)

- limited driving range
- long charging time
- expensive battery
- shortage of charging infrastructure
Introduction

Charging Lane
- Reduced charging delay and EVs battery size
- High construction cost

Charging Station
- Less construction cost
- Long charging delay

Swapping Station
- Short charging delay
- Additional amount of batteries
Introduction

- Charging Lane
 - Reduced charging delay and EVs battery size
 - High construction cost

- Charging Station
 - Less construction cost
 - Long charging delay

- Swapping Station
 - Short charging delay
 - Additional amount of batteries
Introduction

- **Charging Lane**
 - Reduced charging delay and EVs battery size
 - High construction cost

- **Charging Station**
 - Less construction cost
 - Long charging delay

- **Swapping Station**
 - Short charging delay
 - Additional amount of batteries

Which one is more economically competitive?
Introduction

- **Charging Lane**
 - Reduced charging delay and EVs battery size
 - High construction cost

- **Charging Station**
 - Less construction cost
 - Long charging delay

- **Swapping Station**
 - Short charging delay
 - Additional amount of batteries
Introduction

A Cost-Competitiveness Analysis of Charging Infrastructure

Charging Lane
- Reduced charging delay and EVs battery size
- High construction cost

Charging Station
- Less construction cost
- Long charging delay

Swapping Station
- Short charging delay
- Additional amount of batteries

Which one is more economically competitive?
Objective

- Conduct a cost analysis of different types of charging facilities in a transit system to serve the charging needs of electric buses.

- Identify factors that may have a great impact on the cost competitiveness of different charging infrastructure.

- Assess the cost competitiveness of charging lanes on the worldwide BRT corridors.
Objective

- Conduct a cost analysis of different types of charging facilities in a transit system to serve the charging needs of electric buses.

- Identify factors that may have a great impact on the cost competitiveness of different charging infrastructure.

- Assess the cost competitiveness of charging lanes on the worldwide BRT corridors.
Introduction
A Cost-Competitiveness Analysis of Charging Infrastructure

Objective

- Conduct a cost analysis of different types of charging facilities in a transit system to serve the charging needs of electric buses.

- Identify factors that may have a great impact on the cost competitiveness of different charging infrastructure.

- Assess the cost competitiveness of charging lanes on the worldwide BRT corridors.
Setting & Assumption

- A single loop bus line is considered.
- Stationary charging infrastructure is only deployed at the bus terminal.
- Charging lanes are uniformly deployed along the bus line.

Figure: Bus line with charging stations (left) and charging lanes (right)
Setting & Assumption

- A single loop bus line is considered.
- Stationary charging infrastructure is only deployed at the bus terminal.
- Charging lanes are uniformly deployed along the bus line.

Figure: Bus line with charging stations (left) and charging lanes (right)
Setting & Assumption

- A single loop bus line is considered.
- Stationary charging infrastructure is only deployed at the bus terminal.
- Charging lanes are uniformly deployed along the bus line.

Figure: Bus line with charging stations (left) and charging lanes (right)
Setting & Assumption

- All buses are identical and are operated by the same bus company.
- All charging facilities are constructed and operated by the bus company.
- The bus service frequency is fixed.
- The average operating speed of buses, considering dwelling times at bus stations, is constant along the bus line.
- Buses do not need to slow down to recharge on charging lanes.
- The bus company aims to minimize the total capital cost for both the infrastructure and fleet.
Setting & Assumption

- All buses are identical and are operated by the same bus company.
- All charging facilities are constructed and operated by the bus company.
- The bus service frequency is fixed.
- The average operating speed of buses, considering dwelling times at bus stations, is constant along the bus line.
- Buses do not need to slow down to recharge on charging lanes.
- The bus company aims to minimize the total capital cost for both the infrastructure and fleet.
Setting & Assumption

- All buses are identical and are operated by the same bus company.
- All charging facilities are constructed and operated by the bus company.
- The bus service frequency is fixed.
- The average operating speed of buses, considering dwelling times at bus stations, is constant along the bus line.
- Buses do not need to slow down to recharge on charging lanes.
- The bus company aims to minimize the total capital cost for both the infrastructure and fleet.
Basic Considerations

Setting & Assumption

- All buses are identical and are operated by the same bus company.
- All charging facilities are constructed and operated by the bus company.
- The bus service frequency is fixed.
- The average operating speed of buses, considering dwelling times at bus stations, is constant along the bus line.
- Buses do not need to slow down to recharge on charging lanes.
- The bus company aims to minimize the total capital cost for both the infrastructure and fleet.
Basic Considerations

A Cost-Competitiveness Analysis of Charging Infrastructure

Setting & Assumption

- All buses are identical and are operated by the same bus company.
- All charging facilities are constructed and operated by the bus company.
- The bus service frequency is fixed.
- The average operating speed of buses, considering dwelling times at bus stations, is constant along the bus line.
- Buses do not need to slow down to recharge on charging lanes.
- The bus company aims to minimize the total capital cost for both the infrastructure and fleet.
Setting & Assumption

- All buses are identical and are operated by the same bus company.
- All charging facilities are constructed and operated by the bus company.
- The bus service frequency is fixed.
- The average operating speed of buses, considering dwelling times at bus stations, is constant along the bus line.
- Buses do not need to slow down to recharge on charging lanes.
- The bus company aims to minimize the total capital cost for both the infrastructure and fleet.
Model

- **Variables**
 - Bus fleet size
 - Battery size
 - Configuration of charging infrastructure:
 - Charging station
 - # chargers
 - # batteries
 - Swapping station
 - # chargers
 - # batteries
 - Charging lane
 - Total length
 - # segments
 - # inverters

- **Constraints**
 - Guaranteeing the service frequency
 - Satisfying the charging need

- **Objective**
 - Infrastructure + Fleet cost
Model

- **Variables**
 - Bus fleet size
 - Battery size
 - Configuration of charging infrastructure:
 - Charging station
 - # chargers
 - # batteries
 - Swapping station
 - # chargers
 - # batteries
 - Charging lane
 - total length
 - # segments
 - # inverters

- **Constraints**
 - Guaranteeing the service frequency
 - Satisfying the charging need

- **Objective**
 - Infrastructure + Fleet cost
Model

- **Variables**
 - Bus fleet size
 - Battery size
 - Configuration of charging infrastructure:
 - Charging station
 - Swapping station
 - Charging lane
 - # chargers
 - # batteries
 - # chargers
 - # batteries
 - # total length
 - # segments
 - # inverters

- **Constraints**
 - Guaranteeing the service frequency
 - Satisfying the charging need

- **Objective**
 - Infrastructure + Fleet cost
Model

- **Variables**
 - Bus fleet size
 - Battery size
 - Configuration of charging infrastructure:
 - Charging station
 - # chargers
 - Swapping station
 - # chargers
 - # batteries
 - Charging lane
 - Total length
 - # segments
 - # inverters

- **Constraints**
 - Guaranteeing the service frequency
 - Satisfying the charging need

- **Objective**
 - Infrastructure + Fleet cost
Variables

- Bus fleet size
- Battery size
- Configuration of charging infrastructure:
 - Charging station
 - Swapping station
 - Charging lane
 - # chargers
 - # batteries
 - # chargers
 - # batteries
 - # total length
 - # segments
 - # inverters

Constraints

- Guaranteeing the service frequency
- Satisfying the charging need

Objective

- Infrastructure + Fleet cost
Model

- **Variables**
 - Bus fleet size
 - Battery size
 - Configuration of charging infrastructure:
 - Charging station
 - # chargers
 - # batteries
 - Swapping station
 - # chargers
 - # batteries
 - Charging lane
 - total length
 - # segments
 - # inverters

- **Constraints**
 - Guaranteeing the service frequency
 - Satisfying the charging need

- **Objective**
 - Infrastructure + Fleet cost
Model

• Variables
 • Bus fleet size
 • Battery size
 • Configuration of charging infrastructure:
 • charging station
 • swapping station
 • charging lane
 • # chargers
 • # batteries

• Constraints
 • Guaranteeing the service frequency
 • Satisfying the charging need

• Objective is to minimize
 • Infrastructure + Fleet cost
Tradeoff

<table>
<thead>
<tr>
<th></th>
<th>Charging Station</th>
<th>Swapping Station</th>
<th>Charging Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging Delay</td>
<td>Large</td>
<td>Medium</td>
<td>0</td>
</tr>
<tr>
<td>Fleet Size</td>
<td>Large</td>
<td>Medium</td>
<td>Small</td>
</tr>
<tr>
<td>Battery Size</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Infrastructure Cost</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Infrastructure Parameter</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recharging efficiency for charging or swapping stations</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recharging efficiency for charging lanes</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State of charge range (SOCR)</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric power of charging or swapping station</td>
<td>120 kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric power of charging lane</td>
<td>80 kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed construction area for each charging station</td>
<td>2,000 ft²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction area required for one charger</td>
<td>900 ft²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit construction cost</td>
<td>$104/ft²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation cost per unit of charging power</td>
<td>$444/kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit manufacturing cost for battery</td>
<td>$570/kWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit manufacturing cost for bus (excluding battery)</td>
<td>$315,320/veh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction cost for battery swapping system without chargers</td>
<td>$562,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction cost for building one mile of charging lane</td>
<td>$321,800/mi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverter cost per unit of charging power</td>
<td>$250/kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed cost of constructing power transmitter</td>
<td>$20,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The nominal scenario is based on the Metro Orange Line, a bus rapid transit (BRT) corridor in Los Angeles.

<table>
<thead>
<tr>
<th>Bus Line Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service frequency</td>
<td>16 veh/h</td>
</tr>
<tr>
<td>Operating hours</td>
<td>22.2 h</td>
</tr>
<tr>
<td>Circulation length</td>
<td>35.2 mi</td>
</tr>
<tr>
<td>Average speed</td>
<td>19.9 mph</td>
</tr>
</tbody>
</table>
Figure: Results in the nominal scenario
Sensitivity Analysis

Figure: Sensitivity analysis
Sensitivity Analysis

Figure: Competitive domain of charging infrastructure
Sensitivity Analysis

Figure: Sensitivity analysis of charging-lane parameters
Empirical Analysis

A Cost-Competitiveness Analysis of Charging Infrastructure

BRT Corridors

<table>
<thead>
<tr>
<th>City</th>
<th>Circulation Length (mi)</th>
<th>Service Frequency (veh/h)</th>
<th>Operating Speed (mph)</th>
<th>Competitive Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>55.3</td>
<td>18</td>
<td>21.1</td>
<td>Swapping Station</td>
</tr>
<tr>
<td>Bangkok</td>
<td>8.2</td>
<td>15</td>
<td>16.2</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Beijing</td>
<td>73.3</td>
<td>30</td>
<td>11.8</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Bogota</td>
<td>130.5</td>
<td>312</td>
<td>14.3</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Brisbane</td>
<td>33.9</td>
<td>232</td>
<td>15.5</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>79.7</td>
<td>193</td>
<td>11.5</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Cali</td>
<td>42.3</td>
<td>164</td>
<td>9.0</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Changde</td>
<td>23.5</td>
<td>27</td>
<td>19.3</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Changzhou</td>
<td>64.5</td>
<td>43</td>
<td>10.6</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Chengdu</td>
<td>35.8</td>
<td>101</td>
<td>18.6</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Dalian</td>
<td>11.2</td>
<td>86</td>
<td>12.0</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Guangzhou</td>
<td>28.0</td>
<td>320</td>
<td>11.2</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Hangzhou</td>
<td>35.3</td>
<td>67</td>
<td>7.6</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Hefei</td>
<td>8.9</td>
<td>80</td>
<td>10.6</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Istanbul</td>
<td>60.8</td>
<td>137</td>
<td>21.7</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Jakarta</td>
<td>166.5</td>
<td>40</td>
<td>12.4</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Jinan</td>
<td>51.7</td>
<td>49</td>
<td>10.9</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Kuala Lumpur</td>
<td>6.6</td>
<td>16</td>
<td>13.1</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Lanzhou</td>
<td>10.7</td>
<td>90</td>
<td>13.7</td>
<td>Charging Lane</td>
</tr>
</tbody>
</table>
BRT Corridors

Table: BRT corridors and their corresponding competitive charging infrastructure

<table>
<thead>
<tr>
<th>City</th>
<th>Circulation Length (mi)</th>
<th>Service Frequency (veh/h)</th>
<th>Operating Speed (mph)</th>
<th>Competitive Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leon</td>
<td>18.6</td>
<td>20</td>
<td>10.6</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Lianyungang</td>
<td>42.3</td>
<td>25</td>
<td>11.2</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Lima</td>
<td>33.7</td>
<td>101</td>
<td>15.5</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>35.3</td>
<td>16</td>
<td>19.9</td>
<td>Swapping Station</td>
</tr>
<tr>
<td>Mexico City</td>
<td>101.3</td>
<td>56</td>
<td>11.2</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Nagoya</td>
<td>8.3</td>
<td>12</td>
<td>15.5</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Nanning</td>
<td>14.0</td>
<td>51</td>
<td>9.6</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Nantes</td>
<td>7.7</td>
<td>9</td>
<td>11.8</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Seoul</td>
<td>53.4</td>
<td>210</td>
<td>9.9</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Shaoxing</td>
<td>14.3</td>
<td>15</td>
<td>9.3</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Urumqi</td>
<td>34.8</td>
<td>93</td>
<td>8.1</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Xiamen</td>
<td>64.7</td>
<td>107</td>
<td>16.8</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Yancheng</td>
<td>19.9</td>
<td>39</td>
<td>11.2</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Yichang</td>
<td>16.2</td>
<td>94</td>
<td>12.4</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Yinchuan</td>
<td>26.1</td>
<td>44</td>
<td>10.7</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Zaozhuang</td>
<td>80.8</td>
<td>23</td>
<td>24.5</td>
<td>Swapping Station</td>
</tr>
<tr>
<td>Zhengzhou</td>
<td>62.5</td>
<td>129</td>
<td>10.6</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Zhongshan</td>
<td>15.7</td>
<td>26</td>
<td>14.9</td>
<td>Charging Lane</td>
</tr>
<tr>
<td>Zhoushan</td>
<td>28.6</td>
<td>47</td>
<td>11.8</td>
<td>Charging Lane</td>
</tr>
</tbody>
</table>
Finding

- **The service frequency, circulation length**, and **operating speed** of a transit system are discovered to have a great impact on the cost competitiveness of different charging infrastructure.

- Charging lanes supported by the current inductive CWD technology are **cost competitive** for most of the existing BRT corridors, and their superiority becomes more remarkable for the transit systems with **high service frequency** and **low operating speed**.

- Upgrading the **charging power** and reducing the **unit-length construction cost** for charging lanes show great promise on making charging lanes more cost competitive for transit systems with low service frequency.
Finding

- The **service frequency**, **circulation length**, and **operating speed** of a transit system are discovered to have a great impact on the cost competitiveness of different charging infrastructure.

- Charging lanes supported by the current inductive CWD technology are **cost competitive** for most of the existing BRT corridors, and their superiority becomes more remarkable for the transit systems with **high service frequency** and **low operating speed**.

- Upgrading the **charging power** and reducing the **unit-length construction cost** for charging lanes show great promise on making charging lanes more cost competitive for transit systems with low service frequency.
Finding

- The **service frequency**, **circulation length**, and **operating speed** of a transit system are discovered to have a great impact on the cost competitiveness of different charging infrastructure.

- Charging lanes supported by the current inductive CWD technology are **cost competitive** for most of the existing BRT corridors, and their superiority becomes more remarkable for the transit systems with **high service frequency** and **low operating speed**.

- Upgrading the **charging power** and reducing the **unit-length construction cost** for charging lanes show great promise on making charging lanes more cost competitive for transit systems with low service frequency.
Lab for Innovative Mobility Systems (LIMOS)

- **Economic Analysis**

- **Operational Planning**
Thank You!