

Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT)

E. Burton, L. Wang, J. Gonder, A. Brooker, and A. Konan

Conference on Electric Roads & Vehicles February 10, 2015 Park City, Utah

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Regional Road Usage

- 1% of roads are used for 25% of the vehicle miles traveled
- Extensive overlap in road usage apparent across regional vehicle population
- Overlap occurs on high capacity roads

In-Motion Power Transfer

Potential: Road electrification could remove range restrictions of EVs, and increase the fuel savings of PHEVs or HEVs if implemented on a large scale

- ~1% of all roads nationally to be electrified
- Full build out is a major endeavor, so what might incremental benefit be?
- Who might benefit most a state, an urban area?
 - $_{\circ}$ ~ What would be the incentive?

Question: If a government entity wanted to deploy In-Motion WPT what is the fuel savings potential for the regional hybrid personal vehicle population

• Metrics:

- Cost: Infrastructure Mileage
- Benefit: Fuel Displaced
- Assumptions:
 - o Only hybrid vehicle benefits considered
 - Incremental roll out of infrastructure
 - All fuel is displaced during time spent on infrastructure

NATIONAL RENEWABLE ENERGY LABORATORY

WPT Fuel Savings Estimation

Resources & Tools

Transportation Secure Data Center (TSDC)

Warehouse of personal vehicle drive cycles collected as part of the households travel surveys

Future Automotive Systems Technology Simulator (FASTSim)

Drive cycle simulation tool

High Performance Computing

Workflow

Step 1: Spatial Indexing

- Match drive cycles to census geographies
- Match drive cycles to road network

Step 2: Simulation

 Identify vehicle fuel use through simulation across vehicle models using approximately 1 million miles of on road data

Step 3: Data Fusion

- Merge result from step 1 & 2 to quantify fuel use by road segment across a variety of vehicle models
- Assign priority for roll out based on potential fuel displacement

Census Geographies

Source: Census Tiger Files\Bing Aerial Layer

- Consolidated Statistical Area (CSA):
 - CSAs represent groupings of metropolitan and/or micropolitan statistical areas
- GPS data divided by In-CSA and Out of CSA
- GPS In-CSA divided on high capacity, and not on high capacity roads using map match

URBAN FC1 AND FC2 ROADS

Drive Cycle Match

Region	Region In-CSA Interstate Highway Miles	
Atlanta	1,489 (3.6%)	24%
California	6,494 (4%)	54%
Chicago	cago 1,367 (2.78%)	
Kansas City	222 (2.72%)	28%

- Interstates and Highways make up between 2.5% and 4% of the total roads within the CSAs
- The mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago
- Consistent with previous observations

Infrastructure

Simulations Using GPS data

- Simulator takes speed profiles and simulates fuel consumption
- Merging the TSDC data, FASTSim, and the HPC we can simulate millions of vehicle miles as dozens of vehicle models
- Merge with drive cycle match to identify where fuel usage is occurring

7

Data Fusion

- Each urban interstate and highway road segment is given a priority using the total fuel displaced per road segment
 - Increased fuel consumption higher priority, and earlier deployment
- Variation in mileage, but similar trends
 when regional totals are normalized

Prioritization

Results

Region	1% Mileage	Cost \$3 Million/Mile	% Fuel Displaced
Atlanta	413	1.2 Billion	25%
California	1803	5.4 Billion	25%
Chicago	491	1.4 Billion	25%
Kansas City	55	166 Million	25%

Considerations – Further Exploration

Geography

- Other census geographies
- Road Segmentation Needs better normalization to eliminate weighting by segment length
- o Defines the denominator of the % Roads metrics
 - Can have significant impact if comparisons are not made appropriately (used to normalize across regions)

• Vehicle Drivetrain

- How does vehicle interact with infrastructure
 - Hybrid: Accept charge or direct power to the motor
 - Electric: Accept charge
- Charging efficiencies at high speed
- Metrics that can optimize for EVs
- Exploration into suitability modeling to better assess costs and generalize fuel savings using capacity, speed, grade, flow, etc..

Expand HPC Implementation

 After first segment placed re-run simulation to place the second, and third