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(WPT) system control
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energy buffers

 Experimental test results




Introduction and System Description

 Overall system functional block diagram

- 5 cascaded power conversion stages, ensuring safety and
control flexibility
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Elements of WPT System Control

* Inverter duty cycle, d, pulse width modulation,

- Voltage control, U, with active front-end rectifier with power factor
correction,

 Frequency control for reactive power minimization due to load (battery SOC),
gap (2), and misalignment changes.
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Case Study of ORNL’s In-motion WPT

e |nitial 2-coil track, upgraded to 6-coil track for internal funded in-motion wireless
charging system

e System uses a Zylinx ZP24D-250RM 2.4GHz Radio Modem and optical sensors for
communications and relative vehicle position determination.
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Case Study of ORNL’s In-motion WPT

* Definition of vehicle secondary coil relative to track coils

Position 1: Right before alignment
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Case Study of ORNL’s In-motion WPT

Position 6: 50% aligned with the
second transmit coil. \Rec -

c&&

Position 7: Perfectly aligned with the
second transmit coil. Receive |

coy
Position 8: 50% misaligned with the
second transmit coil. Rec§ive
coil

Position 9: Right after alignment with
the second transmit coil; edge to edge. Q Q Receive
coil
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Case Study of ORNL’s In-motion WPT

e Drastic reversals of power flows during vehicle pass-over.
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Case Study of ORNL’s In-motion WPT

e \Waveforms for positions #1 (left) and #9 (right) — right before alignment and right after
allgnment (vehlcle goes over duel coils) oo o s I
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Case Study of ORNL’s In-motion WPT

« Magnetic field measurements using NARDA EHP-50D E&H field analyzer
near driver side front tire, floor board, driver seat, and head rest, all less than
6.25uT for all relative vehicle positions.
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Case Study of ORNL’s In-motion WPT

Aluminum shielding reduces the Electromagnetic Field to safer levels

on the passenger side front tire.

Effective when grid side units have to be away from the primary pad;
reduces emissions from high frequency wires from inverter to the
primary coil.
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In-motion Wireless Charging

Demonstration

- World’s very first in-motion wireless charging system using coils (not
using rails or long wire loops as in previous technologies) with power
smoothing.

- Dynamic Wireless Power Transfer (WPT)
— ORNL demonstration: GEM EV and 6-coil track

— Also addressed motion dependent power pulsations

y 7

- Achieved 3 industry firsts: 1) in-vehicle charge power smoothing
using carbon ultracapacitors, 2) grid side power smoothing using
lithium-capacitors (LiC), 3) both in combination




ORNL Dynamic WPT Demonstrator

- Dynamic Wireless Power Transfer (WPT) Experimental Results
— lllustration of system hardware Plon Cooww mmrocii e Geas
— Power flow as function of vehicle position ______ ________ _____ _________ ...... _____ _________

HF inverter system with HF transformer and
self contained thermal management system

— Future directions in dynamic WPT Nl A o AN NS
o Infrastructure issues (roadway integrity)
o Communications requirements (latency)
o Grid power distribution (intermittency)
o Coil sequencing and power modulation & alignment.
o Local energy storage (smoothening)
— Promote dc distribution along highway

— Highly distributed vs. centralized HF stage




ORNL Dynamic WPT Demonstrator

DWPT Experimental Results

GEM vehicle driving across roadway coils

lllustration of roadway coil current quenching (0.2ms)
and inverter turn-ON coil current ring-up (1.4ms)
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ORNL Dynamic WPT Demonstrator

- Feedback from electrified roadway "%« |
optical sensors are utilized to turn ==
the inverter ON and OFF A
depending on the vehicle tire
positions.

« Contactors are also controlled to
direct the power from the inverter
to the particular set of coils.

4
Time [s]




ORNL Dynamic WPT Demonstrator

 Primary coil current due to inverter turn OFF and ON and coil sequencing
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ORNL Developments in WPT Charging

* The need for energy buffer:
— We keep saying dynamic WPT can reduce the vehicle ESS.
— However, high power is needed for effective energy transfer to the vehicle.
— Energy storage capacity can be reduced, but power rating of the ESS should be increase.
— How?
— Decoupling power and energy components of the vehicle ESS
— Also effectively reduces the vehicle battery and grid side power ripples.

. — Grid side LiC

; L.J'..W ; ) .
P s . ) Vehicle side carbon UC

—ecacls

LiC rack fabricated by Electro Standards
Laboratories, Cranston, RI. Dr. Ray Sepe

HF Electronics

Energized track section of roadway ) DG




Dual ESS Hybridization for in-motion WPT

« Employing fast response EC based energy storage buffers have not been applied for wireless
power transfer systems.

« Particularly for in-motion wireless applications, using EC energy storage systems for the purpose
of grid support or vehicle battery current ripple reduction makes use of a high power capable
buffer available for both transmit and receive sides of the system.

 Both transmit side and the receive side have component that are relatively sensitive to the fast
transients or high ripples.
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Grid-side energy buffering/peak current reduction

Architecture 1: EC energy storage system is connected to the AC grid through a bi-directional

rectifier/inverter:

In this scheme, EC bidirectional
converter is first controlled in

L4,

HF Power
Inverter

Controller with
PWM
Regulation
Strategy

rectifier mode to smoothly charge

the EC in normal conditions. UJ |= | Active Front

This rectifier operation is stopped €O[® | End (aFE) _|

when the EC voltage reaches to its < [and PF Comp.

maximum value. 1

Then, as soon as a vehicle starts o

passing through the primary coil, eI Resesins Primary Pad
EC converter is operated in inverter | 47 U —)
mode. T, E}Q E@Dz e
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a high pulse power so that the Uee T UE{ = 1 —
charging power required for the car D, D .

is not supplied from the grid. GT#K} C?JK} Eleg:;gzlgirgcal

Once the vehicle moves away from
the primary pads, EC converter is
again operated in rectifier mode to
relatively more slowly recharge the
EC.




Grid-side energy buffering/peak current reduction

* Architecture 2: EC energy storage system is connected to DC link through a DC/DC converter:

HF Power
Inverter

PN
Uac Active Front *é
QO | End(AFE) - _l
and PF Comp. 8
L 2
/77

cal

Primary Pad

Converter

_|_
Bidirectional
Uy DC/DC

—L_FElectrochemical
B Capacitor

* In this configuration, instead of using a bi-directional rectifier/inverter, a bi-directional DC/DC
converter is utilized by moving the EC to the DC side of the circuit.

In this case, the EC is recharged from the DC link through a DC/DC converter under normal
conditions. As soon as a vehicle starts passing through the primary pads, the EC is discharged
to the DC link through the bi-directional DC/DC converter. After vehicle completes the WPT
charging track, DC/DC converter is operated to relatively more slowly recharge the EC. In this
configuration, the EC charging power is commanded by a controller with relatively slower

dynamics.



Grid-side energy buffering/peak current reduction

« Architecture 3: EC energy storage system is passive parallel (directly) connected to the DC link:

HF Power T' |—_lll

Inverter !
U,=U .
d — 59 Primary Pad
Uy Active Front |4 |_]
QO | End (AFE) |3 /\I _| L,
@)
and PF Comp. A I
-\ ®
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77 Capacitor

* In this case, EC supplies a large burst of power to the HF inverter as a vehicle passes through the
primary pad. Although this configuration does not provide an active energy management on the
EC, the AFE rectifier’s DC link voltage dynamics can be slowed down so the high charging power
does not reflect back to the grid.



Grid-side energy buffering/peak current reduction

 Architecture 4: EC energy storage system is connected to the DC link with a cascaded DC/DC
converter:

HF Power 1 I
c, I

I, Inverter
'—> Primary Pad
_I_
Uac Active Front i R Bidirectional (7 é L
el
@ End (AFE) “T~U.| DCDC [“ g _| 1
and PF Comp. Converter | X\ A
®
Electrochemical
s Capacitor

* |n this case, the EC and its DC/DC converter are in a cascaded form with the AFE converter and
the HP power inverter. In this scheme, the DC/DC converter does not have to be bidirectional as
compared to the Architecture 2 shown earlier; therefore, cost and size savings are possible.



Vehicle-side energy buffering/peak current reduction

 Architecture 1: EC energy storage system is connected to the battery terminals via a cascaded
DC/DC converter:

Bidirectional DC/DC
Converter G 7L— I
U — N > ~5L &5 .
Controller with—3! Le »
de on lr)(iN ;/I W o T D2 U+
: 1 D, re Electrochemical
I,—>» Regulation G —=  Capacitor
Strategy ~ |—p- LI G, T Cap
[,.—>
 J
Bridge Rectifier
A
E 1 U—I— ’ C -Il-] ’
z
g C, de E 7oL | Vehicle
_— ™ —
'g L &) Battery
: SN :
n ¢ | I

* In this case, the high power pulse received by the secondary coils is rectified and dumped onto
the DC link.

* Due its relatively faster dynamics, EC receives this high charging pulse.

» When the vehicle completes the WPT pad tracks, EC is controlled in a way that it relatively more
slowly recharges the battery over a period of time.



Vehicle-side energy buffering/peak current reduction

* Architecture 2: EC energy storage system is connected to the DC link through a cascaded DC/DC
converter and it is connected to the battery terminals via another cascaded DC/DC converter:

DC Link _ Ib
9 U,
& ! T i e
" G, - EC C, Vehicl
5 =L Bridge U, DC/DC DC/DC —= = | Vehicle
% L, Rectifier Converter ‘ Converter T | battery
8 N - -
n
Electrochemical
Capacitor

* This architecture provides a more flexible control of the EC power and in this case the EC voltage
is decoupled from the EC link voltage.



Vehicle-side energy buffering/peak current reduction

* Architecture 3: EC energy storage system is connected to the DC link through a parallel bi-
directional buck-boost DC/DC converter:

IEC
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DC/DC Capacitor
Converter - ‘
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= U c |
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S A
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« EC is recharged with a high power pulse when the vehicle is moving on the WPT pads.

* Once the charge is received and vehicle moves away, EC is controlled to slowly recharge the
vehicle battery over a period of time.

 This configuration provides that the EC voltage is decoupled from that of the battery voltage and
DC link voltage and enables actively controlling the charge and discharge power of the EC.



Vehicle-side energy buffering/peak current reduction

* Architecture 4: Two parallel individual DC/DC converters are utilized for vehicle battery and the

EC:
IEC
<>
U.+ _
Bidirectional | “° Electrochemical
DC/DC Capacitor
Converter - ‘
A
E ! TRy -|€]b
? Ci_ Bridge de § Bidirectional _Eo L7 Vehicle
ECr T | Rectifier 3 DC/DC T = | batiery
3 R Converter
A ¢ ————

* This configuration involves two separate bi-directional DC/DC converters; one for the vehicle
battery and other one for the EC for maximized flexibility in controls and active energy
management among the storage devices.



Simulations for a 6-coil track - ideal case

* The power delivered from the grid with and

without the EC assistance with respect to the
positions as the vehicle is passing through
the transmit pads.

Without the EC assistance on the primary
side, the grid is more stressed and grid power
has large dips and current ripples. However,
under the EC assistance, only the average and
much smoother power variations are reflected

to the grid. All the grid power ripples and
transients are eliminated since the EC is

utilized as an energy buffer on the grid side
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* Positive effect on the battery power
variations.

« Similar to the grid power variations, ripples
and dips in vehicle battery power can also be
eliminated with the EC assistance.

 With the proper utilization of the EC, vehicle
battery is only subject to the much smoother
average power variations whereas EC energy
storage system handles the ripples and high
power variations.



Example design case: Ultra-capacitor sizing

Power transfer curve
T T T

* Let’s take the case moving from
one coil to the other.

» There are 2 peak power transfer
points on the track.

* The integral of the power
transfer curve indicates that the
energy transferred between two
peak power points is 1794.3
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Example design case: Ultra-capacitor sizing

Maxwell K2 series ultra-capacitors have ideal maximum current rating. Particularly, maximum
current rating of BCAP0650 can carry 88 A, maximum which is sufficient for our application.

GEM vehicle on-board bhattery pack is a lead-acid battery with 72V nominal voltage with 82V max
during charging.

Rated voltage of BCAP0650 is 2.70 V. In order to get a string of ultra-capacitors with ~82 V of
rated voltage, 30 ultra-capacitor cells are required in series: 30x2.70 = 81V

The rated capacitance of the string becomes 36.11 Farads:
650+30=21.67F

The voltage variation can be calculated by: i
2 2
E = EC[Vfinal _‘/initial ]

=70.84V

Therefore: 5 , 2F , 2x1794.3
final - initial o~ 72 o
21.67

Hence, with 1.16 V of variation (discharge or discharge) in the ultra-capacitor string’s voltage,
1794.3 Watt-seconds of energy can be captured or delivered by the ultra-capacitor.



DC power supply current with

DC power supply current
without Li-ion capacitor [A]

Experimental test results

Current ripple smoothing with Li-ion capacitors on the grid side unit and
carbon electrochemlcal uItra-capamtors on the vehlcle S|de
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Summary

 Current ripple smoothing with Li-ion capacitors on the grid side unit and
carbon electrochemical ultra-capacitors on the vehicle side.
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Questions & Discussions

« Contact Information

— Omer C. Onar, onaroc@ornl.gov, 865-946-1351
— P.T. Jones, jonespt@ornl.gov, 865-946-1472
— Madhu Chinthavali, chinthavalim@ornl.gov, 865-946-1411
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