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Overview 

 The Vision 

 Magnetic Topologies 

 Non-polarized, polarized and multi-coil 

 Buses and Private EVs 

 Present dynamic systems 

 Challenges of stationary and dynamic coexistence 

 Future Roadway Systems 
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Allows lower battery weight but Gaps 20-40cm 

The Vision: A dynamic highway 
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MAGNETIC TOPOLOGIES 
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Non-Polarized vs. Polarized 

Polarized on Polarized Circular on Circular 

7kW zone 
7kW zone 

Charging Area  
Circular < 2x Polarised 

Transfer height d/2  Transfer height d/4  

Winding 

direction

Flux path 

height hz
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0 5 mT

160mmTx. Pad Ferrite

Rx. Pad 

Coil 

Al

Coil 

Circular Coupler Limitation 

 Power null in all directions (around 80% pad radius) 

 Suited to stationary applications  

 Requires multiple offset secondary's for dynamic 

 Size of pad must also be large for high Z 

 Undesirable for private vehicles 
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Dynamic Evaluations 

 Power Pulses followed by Nulls 

 Overcome using two offset coils and ultra capacitors 

 But reduces potential capture 

 Concluded Polarised needs attention  

 

Oakridge National Laboratory 
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Multi-coil on Various Primaries 

Charging area 3 x greater 

Polarised Primary Non-Polarized Primary 
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IPT Evaluations: Auckland 

x y

z

Pad Pitch, py

Vertical offset, δz

Direction of 

vehicle travel
Horizontal tolerance 

across road

DDQ Receiver

600mm lateral tolerance @ full power  
using multi-coil vehicle pads  
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 Three Phase Track (ferrite backing) 

 Horizontal coil only 
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Multiphase Track Evaluations 

Reference [25] 
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BUSES & PRIVATE VEHICLES 
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Bus Charging Genoa, Porto Antico 

 60kW 20kHz Charger (2002) 

 2 x 30kW oval chargers 

 Lowered to within 1-2 inches 
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WAVE IPT Charged Bus 

 (2014) 50kW charger  

 Circular Pads, gaps above 9 inches 
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17 cm gap 

KAIST OLEV Systems 

 2013 KAIST 

 Polarised Primary and Secondary couplers 

 Sized for bus 

 20-100kW 
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Bombardier Primove Wireless 

 Bombardier (2013) Primove  

 Polarized Multiphase tracks and Pads 

 100-200kW transfer 
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Private Vehicle Charging 

 Hybrids 3kW and pure EVs up to 7kW 

 Main focus of commercial effort 

 SUVs and Sports EVs and 10-20kW 

 Varying ground clearance 
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Stationary Charging Comparisons 

 Frequency  

 85kHz announced by SAE J2954 for private 

 20kHz considered for buses 

 Magnetic designs Private EVs 

 Focus on low Z systems at 3kW & 7kW 

 Size constrained (Hybrids 250 mm2 secondary) 

 Simplest topologies (min: size, weight, cost, electronics)  

 In garage or building with controlled tolerances and gaps 

 Higher Z & Power still under discussion 

 Magnetic designs Public transport 

 Bus topologies all vary between suppliers 

 Assumes defined parking locations 

 No systems optimised for roadway  

 Heights, tolerances or power 

 Lateral Tolerances Limited by Design 
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PRESENT DYNAMIC SYSTEMS 
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20-100kW 

17 cm gap 

Inductive strips sized for Bus 

KAIST OLEV Systems 

 2013 KAIST 

 Polarised only track and secondary has power nulls 

 Two phase DQ track smooth's power transfer 

Is

Pick-up

Power supply rail

moving direction (x)

lateral displacement 

ferrite core
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Light Rail: Continuous 270kW power, buried cables replaces catenaries 

 

Dynamic IPT Systems  

 Bombardier Primove Multiphase using multiple pads 
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Bus: Dynamic trials  

        lowered pads at controlled height 
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CHALLENGE OF 

COEXISTENCE 

21 of 30 



Sharing the Highway 

 Characteristics of Dynamic Bus Systems 

 Lower frequency (typically ~20kHz) 

 Larger or matched Secondary's  

 Lowers roadway cost, helps emissions 

 Large length primaries (2.5m or above) 

 Desirable Requirements for Powering EVs  
 Ideally future stationary pads compatible with dynamic 

 Present in-garage or parking buildings too small 

 Multiple power pads each ~ 10-20kW could be suitable 

 Use one for stationary and more as required for highway 

 Polarised Pads can Interoperate  

 single, two-phase and three phase if pole pitches similar 

 Smaller EVs and charge emissions may dictate 

 Need a Common Frequency for Private and Public 

 To accommodate private EV size, 85kHz seems better 
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Power 
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A Roadway Vision 

 Sequentially Energised Pads under the Vehicle 

 Pad length dictated by smallest vehicles 

 Meeting varying power demand of traffic 

 Larger vehicles have more pads 
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Options #1 

Challenges 

 Mains or DC under roadway 

 Prohibited in some countries or buried several feet 
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Option #2 

Challenges 

 All pads in a group must be on 

 Central PS handles all reflected VARS 

 Long track lengths at the resonant frequency 

 Ok at 20kHz maybe issue at 85kHz 
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Option#3 

 Individual Pads can be controlled & switched 

 

Challenge 

 Long track lengths at the resonant frequency 

 Ok at 20kHz maybe issue at 85kHz 
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Auckland’s Vision 

 Individual Pads can be controlled & switched 

 Long track lengths at the low resonant frequency 

 Higher Frequency at pad 

 No VAR reflections, no DC or mains under the road 
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Dynamic Highway Options 
 Intermediate Controllers 

 Single phase pads 

 

 

 

 

 

 

 Multiphase Pads 
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Laboratory Scale Dynamic Highway 
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Research Questions 

 Robustness of highway Pads 

 Roadway flex and longevity (at least 10 years needed) 

 

 Impact of mineral surface of highway 

 

 Required tolerances? 

 What type of vehicle gap can we support 

 Lowering secondary pads on trucks/busses? 

 

 What cost is acceptable? 
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