Roadway Infrastructure and WPT Integration

CERV February 9, 2015 Rebecca S. McDaniel North Central Superpave Center, Purdue University

Technical / Engineering Challenges

- More concern for dynamic and semi-dynamic charging
 Mainline charging pad installation and performance
- Different types of pavements behave differently
 - Asphalt pavements deform under load, stiffness changes over time, properties vary with temperature
 - Concrete pavements expand and contract, curl and warp with variations in temperature and moisture
 - All types of pavements may crack

Pavement Surface Courses

- Safety
- Traffic Loads
- Environmental Factors
 - Temperature extremes
 - Moisture variations
- Other Considerations
 - Noise
 - Smoothness
 - Economics Initial and Life Cycle
 - Traffic Disruptions

Steel in Concrete Pavement

• Depending on type of concrete pavement, there can be significant amounts of steel.

Steel slag aggregates used extensively in some areas

Surface Types

Public Roads

- Unpaved 1,393,651 miles
- Asphalt 768,961 miles
- Concrete 50,369 miles
- Composite 98,758 miles

Urban Interstates

- Unpaved none
- Asphalt 6,912 miles
- Concrete 4,534 miles
- Composite 4,246

We will have to be able to install in asphalt, concrete and composite pavements.

Very little new roadway construction – will have to be able to "retrofit" installation.

Concerns about WPT Impacts on Pavement

- Must maintain safe, durable roadways (adequate friction and smoothness) over pavement life
- WPT cell must function while pavement deforms and cracks
- Effects of WPT on steel reinforcing or steel slag aggregate (and vice versa)
- How long will cells perform?

Pavement Service Lives

- Asphalt pavements may last 8-20 years or more
 - Perpetual pavements designed to last 50 years with routine surface renewal
- Concrete pavements 30-50 years
- Significant reductions in service life anything more intrusive than routine maintenance – will not be acceptable.

WPT Network Needs

• WPT network must be large enough to justify costs of vehicles and infrastructure

Crumbling Infrastructure

- American Society of Civil Engineers 2013 Report Card rates:
- Roadway conditions D
 - Congestion and condition problems
 - 42% of US major urban interstates are congested
 - Congestion costs \$101 billion a year in lost productivity and wasted fuel
 - Federal, state and local budgets investing \$91 billion per year
 - FHWA estimates funding needs at \$170 billion annually
- Bridges C+
 - One in nine bridges rated structurally deficient

Economic Climate

- Reduced mileage and more efficient vehicles reduce Highway Trust Fund income
 - Gas tax has not increased since 1993
- Electric vehicles further reduce income
- Under these conditions, hard to justify increased costs to build roads
- Must convince state agencies, FHWA of value of WPT infrastructure

Highway Agencies

- Conservative, risk averse
- Striving to increase pavement service lives, decrease costs
- Some are more environmentally conscious than others
- Generally reluctant to do anything that might reduce pavement life, increase maintenance costs and disruption

Realistically

- WPT is a great idea with many benefits
- But, it will be a hard cell in cash-strapped highway agencies
- How can we overcome the reluctance of agencies to implement the technology?

Rebecca S. McDaniel Technical Director North Central Superpave Center 765/463-2317 ext. 226 rsmcdani@purdue.edu https://engineering.purdue.edu/NCSC/